[도서 리뷰] 머신러닝을 활용한 웹 최적화
이 리뷰는 한빛미디어의 나는 리뷰어다 이벤트를 통해 책을 제공받아 작성했습니다.
머신러닝을 활용한 웹 최적화
머신러닝이나 통계 이론만을 익히다 보면 실제 내 서비스에 어떻게 적용해야 할지 난감해진다. 책도 읽고 여러 모델도 돌려봤지만 실제 서비스에 적용해 보는 건 또 다른 얘기가 된다. 그리고 타이타닉 예제를 돌려보더라도 다른 분류 예제에 적용해 볼 수 있다는 건 알지만 실제 내 예제에 적용하기까지의 과정이 쉽지 않다. 이 책을 선택해서 읽게 된 계기도 구체적인 상황에 머신러닝이나 통계적인 이론을 적용하기 때문이다. 그래서 머신러닝이나 통계적 이론이 없으면 책 내용이 어렵게 느껴질 수도 있다.
머신러닝과 통계적인 기본적인 내용을 학습한 사람이 웹 혹은 모바일 서비스 등을 개발하며 응응 사례를 참고해 보기에 적당한 책이다. 이 책은 머신러닝이나 통계의 전반적인 내용에 대한 학습보다는 웹 최적화라는 주제를 통해 실제 서비스 개선을 위해 해볼 수 있는 여러 사례를 알려준다.
Learning By Doing 방식으로 쓰여진 책을 좋아하는데 이 책이 그런 책 중 하나다. 얼마전에 리뷰했던 비즈니스 머신러닝도 비슷한 종류의 책이라 볼 수 있을거 같다.
책 제목만 봤을 때는 웹 최적화라고 되어 있어서 웹 트래픽을 최적화 한다는 걸까라는 생각이 들었다. 그런데 막상 목차를 보고나니 웹 개발자 혹은 마케터, 기획자가 함께 보면 좋은 내용일거라는 생각이 든다. 물론 난이도가 있기 때문에 소스코드를 이해하고 적용해 보는 건 다른 얘기지만 다양한 통계적 기법을 통해 서비스를 개선해 볼 수 있다는 방법을 알아볼 수 있다는 점이 장점이다.
통계적 검정이나 머신러닝을 적용한다면 무언가 개선을 하고 또 다른 실험 계획을 세우고 개선하는 과정의 반복이 될것 같다. 서비스 개선을 위해 머신러닝을 적용할 수 있는 예제를 통해 개발자는 구체적인 적용 사례를 알아볼 수 있고 마케터나 기획자는 어떤 시도를 해볼 수 있을지에 대한 아이디어를 얻을 수 있는 책일 것 같다.
머신러닝이나 딥러닝을 서비스 개선에 활용하는 사례에 관심이 많은데 이 책은 A/B Testing, 슬롯머신, 베이즈 최적화 등을 활용하여 어려운 통계적 개념을 서비스에 적용하는 사례를 알려준다.
행렬 연산의 기초가 책의 가장 뒷 부분에 나오는데 이런 배치 구성도 좋다고 생각한다. 아마 처음부터 행렬 연산의 기초, 파이썬 기초가 나왔더라면 지루했을 것이고 또 이 책을 구매해서 보는 사람은 어느정도 파이썬이나 머신러닝, 통계에 대한 기초 지식이 있는 사람들이지 않을까 싶은 생각이 든다.
그래서 파이썬으로 머신러닝 예제 코드를 돌려봤고 통계적인 지식도 어느정도 있는데 웹 서비스를 통해 사용자 행동 개선에 관심있는 사람들이 보면 적합한 책이지 않을까 싶다.
이 리뷰는 한빛미디어의 나는 리뷰어다 이벤트를 통해 책을 제공받아 작성했습니다.