[도서 리뷰] 처음 시작하는 딥러닝 Deep Learning from Scatch
이 리뷰는 한빛미디어의 나는 리뷰어다 이벤트를 통해 책을 제공받아 작성했습니다.
scratch 로 들어가는 책들은 대부분 밑바닥부터 코드를 작성해서 설명하고 두껍지도 않아서 읽기에 부담도 적은 편이다. 이 책의 제목에 “밑바닥부터~”가 들어갈 것 같았지만 이 책의 제목은 “처음 시작하는 딥러닝”이다.
천리길도 한 걸음부터 시작하듯이 이 책은 딥러닝을 시작하는 초심자를 위해 파이썬의 간단한 코드를 통해 딥러닝 알고리즘과 원리를 설명하고 있다. 기본적인 파이썬 지식을 익히고 있고 넘파이의 행렬연산을 이해하고 있다는 가정하에 비교적 간단하게 코드를 구현해 가며 딥러닝 알고리즘을 이해할 수 있게 설계되어 있다.
그리고 대부분의 설명을 수식 > 그림 > 코드의 순으로 설명하고 있다. 그래서 수식이 어렵더라도 그림을 보고 이해하고 코드를 보고 활용할 수 있도록 되어있다.
추상화가 잘 된 딥러닝 모델을 가져다 사용하다보면 사용하기는 편리하지만 내부 원리가 잘 이해되지 않았던 적이 있는데 그런면에서 이 책은 딥러닝을 처음 시작하는 사람에게도 이미 추상화가 된 모델을 가져다 잘 사용하는 사람들에게도 도움이 될거 같다.
주석도 친절하게 번역이 되었고 이렇게 번역된 github 저장소도 제공하고 있다.
https://github.com/flourscent/DLFS_code
여전히 딥러닝 수학공식은 어렵지만 코드에 적혀있는 주석의 도움을 받아 하나씩 실행해 볼 수 있었다. 또, 마지막 부분에서는 파이토치를 활용해서 주택가격, mnist 등의 데이터를 통해 신경망을 설명하고 있다.
딥러닝에 필요한 핵심내용을 이 책을 통해 다시 정리해 볼 수 있었다.